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Abstract We propose an optimization formulation using the l1 norm to ensure accu-
racy and stability in calibrating a local volatility function for option pricing. Using
a regularization parameter, the proposed objective function balances calibration ac-
curacy with model complexity. Motivated by the support vector machine learning,
the unknown local volatility function is represented by a spline kernel function and
the model complexity is controlled by minimizing the 1-norm of the kernel coeffi-
cient vector. In the context of support vector regression for function estimation based
on a finite set of observations, this corresponds to minimizing the number of sup-
port vectors for predictability. We illustrate the ability of the proposed approach to
reconstruct the local volatility function in a synthetic market. In addition, based on
S&P 500 market index option data, we demonstrate that the calibrated local volatility
surface is simple and resembles the observed implied volatility surface in shape. Sta-
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bility is illustrated by calibrating local volatility functions using market option data
from different dates.

Keywords Local volatility function · Spline kernel · Calibration · L1 optimization ·
Trust region method · Option pricing

1 Introduction

One of the most important problems in finance is accurate and stable model calibra-
tion from the market option data. Calibration accuracy refers to the agreement be-
tween the model option values and the observed market option prices. Stability refers
to the property that the calibrated model should be similar from a slightly changed
data. Stability is crucial in practical applicability of the calibrated model and is in
general a more elusive property to achieve. Calibration accuracy requires a model
to be sufficiently complex but stability demands a model to be sufficiently simple,
in accordance with Ockham’s razor. Proper control of these conflicting objectives is
the key to ensure model calibration accuracy and stability. In this paper, we propose
a new approach to calibrate, stably and accurately, a local volatility function in a
diffusion process from market option prices.

The conflicting objectives in calibration of an option pricing model can be easily
understood. The well-known Black-Scholes model [3] is simple and its calibration
is typically stable. Under the pricing measure, the Black-Scholes model can be de-
scribed as

dSt

St

= (r − q)dt + σdWt

where St is the stock price at time t , r > 0 is the risk free interest, q is a constant
dividend yield (0 < q < r), and σ > 0 is a constant volatility. The process Wt is a
standard Brownian motion. In practice, the volatility σ cannot be directly observed
from the market. The implied volatility value which is inverted from a market option
price is widely used; traders frequently quote the implied volatility in place of the
actual option price. Unfortunately the model lacks sufficient accuracy in pricing op-
tions; the well documented implied volatility smile attests to this fact [22, 23]. Many
more complex models such as jump diffusion models, see, e.g., [2, 19, 20], stochastic
volatility models [17, 18], as well as jump coupled with stochastic volatility mod-
els [4] have been proposed in mathematical finance literature. One potential problem
with a complex model is additional computational and implementation cost, loss of
intuition, and potential decrease in calibration stability. Practitioners may, and in fact
often do, favor a simpler model.

The simplest extension to the Black-Scholes model is the local volatility function
generalized BS model proposed in [10, 11],

dSt

St

= (r − q)dt + σ(St , t)dWt (1)

where the local volatility function σ(S, t) deterministically depends on the underly-
ing price St and time t . This model is attractive because there remains one single
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source of randomness and pricing can be based entirely on complete risk elimination.
Many computational methods have been proposed to calibrate local volatility func-
tions, see, e.g., [1, 9, 11, 15, 21]. In [16], we extend the calibration method in [9] to
a jump diffusion model coupled with a local volatility function. The local volatility
function diffusion model remains popular in practice because of its simplicity.

The local volatility function plays an important role in option pricing. Local vari-
ance in a diffusion model (1) is shown to be a conditional expectation of the instan-
taneous variance in a stochastic volatility model, see, e.g., [13]. Even in the simplest
extension (1) to the Black-Scholes model, it is difficult to balance the conflicting goals
of calibration accuracy, which requires a model to be sufficiently complex to match
all given data, and stability, which demands the model to be sufficiently simple so
that a slight change of data does not cause a large change in the calibrated model. In
[9], the local volatility function is represented by a cubic spline with a fixed number
of spline knots and end conditions. The conflicting objectives of sufficiently complex
model to achieve calibration accuracy. Model simplicity for stability is balanced by
choosing a small number of spline knots (making a model simple) to match market
option prices sufficiently accurately. Unfortunately this process is difficult to auto-
mate and the calibrated local volatility function from this ad hoc procedure may lack
stability and have unrealistic oscillations.

In this paper, using spline kernels, we propose a regularized optimization formu-
lation to ensure both accuracy and stability in the local volatility function calibration
for (1). The objective function in the proposed formulation balances the calibration
accuracy with the model complexity based on a regularization parameter. The un-
known local volatility function is represented by a kernel spline. The complexity of
the model is controlled by minimizing the 1-norm of the coefficient vector for a ker-
nel spline. In the context of the support vector regression for function estimation
based on a finite observations, this corresponds to minimizing the number of support
vectors, which in general leads to good generalization property.

The presentation of the paper is as follows. We motivate the proposed optimization
formulation in Sect. 2. The accuracy and stability of the calibrated local volatility
surface is illustrated computationally based on both synthetic data and market data in
Sect. 4. Concluding remarks are given in Sect. 5.

2 An L1 optimization formulation for stability

In a local volatility function model (1), σ(S, t) is assumed to be a deterministic func-
tion of the asset price S and time t . Under model (1), the option risk can be com-
pletely eliminated by trading the underlying asset under some conditions including
no arbitrage, continuous trading, and no market friction. In addition, the option value
function V (S, t) of time t and the underlying price S satisfies the Black-Scholes par-
tial differential equation (PDE),

∂V

∂t
+ 1

2
σ 2(S, t)

∂2V

∂2S
+ (r − q)S

∂V

∂S
− rV = 0. (2)

Initially the underlying price S0 at time t = 0 is given. Let V 0(K,T ) denote the
initial European option value for all strikes K and maturity T . It can be shown that,
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under (1), the initial value function V 0(K,T ) satisfies the adjoint partial differential
equation below,

∂V 0

∂T
− 1

2
σ(K,T )2K2 ∂2V 0

∂K2
+ (r − q)K

∂V 0

∂K
+ qV 0 = 0, (3)

see, e.g., [11] and [1].
It can be readily seen from (3), that, under some assumptions, the local volatility

function can be determined if the initial option price V 0(K,T ) is known for any
strikes K > 0 and maturity T > 0, i.e.,

(
σ(K,T )

)2 = 2
∂V 0

∂T
+ qV 0 + K(r − q) ∂V 0

∂K

K2 ∂2V 0

∂K2

, (4)

see, e.g., [11] and [1] for more discussions. Therefore, assuming the ratio on the right
hand side of (4) is always nonnegative, the local volatility function can be uniquely
determined if the initial European option price V 0(K,T ) is known for all K > 0 and
T > 0.

Unfortunately the market typically provides option prices only for a limited finite
set of strikes and maturities. Assume that m initial market option price {V̄ 0

j }mj=1,
corresponding to strike and maturity pairs (Kj ,Tj ), j = 1, . . . ,m, are provided. The
objective of calibrating a local volatility function becomes determining σ(S, t) such
that the model option prices match given market data and the calibration of the local
volatility function is stable.

Accuracy and stability requirements clearly make local volatility function estima-
tion a challenging problem. We consider first the following simpler problem. Assume
that the local volatility function only depends on the underlying asset price S, i.e.,
σ(S, t) ≡ σ(S). In addition, we assume for now that we actually have direct observa-
tions of the local volatility σ̄j = σ(Sj ), j = 1,2, . . . ,m. The problem of determining
a function σ(S) from the observations (Sj , σ̄j ), j = 1, . . . ,m, is a well known sta-
tistical learning problem. In particular, the support vector regression (SVR) offers a
potential solution approach, see, e.g., [24].

Support vector learning has a theory of uniform convergence in probability and
has shown to provide good performance on a wide variety of learning problems. It
generalizes a number of well-known learning models such as neural networks and
radial basis functions networks, see, e.g., [24]. For regression problems, Girosi [14]
has shown that SVR is equivalent, under certain conditions, to some sparse approxi-
mation schemes.

We motivate our proposed formulation for the volatility function calibration by
examining the properties of the solution to support vector regression. Here we follow
a derivation of the solution of SVR using the classical regularization theory described
in [14]. Assume that the training data {(Si, σ̄i)}m1 is obtained from sampling some
unknown underlining function σ(S) ≡ σ(S;α):

σ(S;α) =
∞∑

n=1

αnφn(S) + α0



Stable local volatility function calibration using spline kernel 679

where {φn(S)}+∞
n=0 are specified basis functions. Determining the function σ(S) is

equivalent to specifying the coefficients {αj }. This problem is clearly underdeter-
mined because the training observation set {σ̄j }mj=1 is finite. Regularization by impos-
ing an additional smoothness constraint on the solution has been used to overcome
this ill-posedness. For example, we can solve a variational problem

min
α

C

m∑

i=1

E
(
σ̄i − σ(Si;α)

) +
∞∑

n=1

α2
n

λn

(5)

where C ≥ 0 is a constant, E (·) is some error cost function and {λn}∞n=1 is a decreasing
positive sequence. A quadratic function, i.e., E (x) = x2, is an example of the error
function. Vapnik [24] proposes to use an ε-insensitive cost function

E (z) = |z|ε def=
{

0 if |z| ≤ ε

|z| − ε otherwise

It has been shown in [14] that, with the assumed smoothness functional, independent
of the cost function E (·), the solution of (5) has the form

σ(S;β, β̄) =
m∑

i=1

(β̄i − βi)K(S,Si) + β0 (6)

where K(x, y) is a symmetric kernel function,

K(x, y) =
∞∑

n=1

λnφn(x)φn(y),

which is the inner product of the basis {φn(x)}+∞
n=0 and {φn(y)}+∞

n=0. In addition, β̄ and
β solve the convex quadratic programming problem below

min
β,β̄

ε

m∑

i=1

(β̄i + βi) −
m∑

i=1

σ̄i (β̄i − βi) + 1

2

m∑

i=1

m∑

j=1

(β̄i − βi)(β̄j − βj )K(Si, Sj )

s.t.
m∑

i=1

(β̄i − βi) = 0 (7)

0 ≤ β̄, β ≤ C.

Note that the solution σ(S) in (6) is computed from the kernel function K(x, y) rather
than the basis functions {φn(y)}+∞

n=0. This use of kernel functions has led to computa-
tional success of support vector machining learning. In practice, one often specifies
the kernel function directly.

Let β∗ and β̄∗ be the solution to (7). Let SV denote the set of support vectors
identified as follows:

SV
def= {

i : either β∗
i �= 0 or β̄∗

i �= 0
}

= {
i : β̄∗

i − β∗
i �= 0

}
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where the last equality is due to the fact that βi and β̄i cannot both be nonzero when
ε > 0.

The SVR solution (6) can now be expressed as

σ
(
S;β∗, β̄∗) =

∑

i∈SV

(
β̄∗

i − β∗
i

)
K(S,Si) + β∗

0 (8)

The above expression implies that data points which are not support vectors have no
influence in the solution. In the non-degenerate cases, slight perturbations of such
data points will not affect the solution (8). Furthermore, theoretical analysis suggests
that a small number of support vectors leads to a small generalization error.

Unfortunately, the local volatility function calibration problem is much more com-
plex than the above function estimation problem based on direct function observa-
tions. Instead, only option prices, which depend nonlinearly on the local volatility
function, are provided. The LVF model calibration is a function estimation problem
based on indirect measurements, which are the given market option prices.

Motivated by the fact that the predictability of the SVR solution is directly related
to a small number of nonzero coefficients (support vectors) in (8), we propose the
following approach to estimate the local volatility function from a finite set of op-
tion price (indirect) observations. We use kernel splines to represent a local volatility
function σ(K,T ). As direct observation on the unknown local volatility is impossi-
ble, we choose a set of training points {(Ki, Ti), i = 1, . . . , l}, which may or may not
coincide with strikes and maturities of observed option prices. We represent a local
variance function using a spline kernel as follows:

(
σ
(
(K,T );x))2 =

(
l∑

i=1

xi K
(
(K,T ), (Ki, Ti)

) + x0

)2

(9)

where K(·, ·) is the tensor product of the two 1-dimensional spline generating kernels
with an infinite number of knots in K and T respectively. We note that option values
depend explicitly on σ 2((K,T );x) rather than σ((K,T );x). Following the standard
optimization notation, here we use x to denote the unknown coefficient vector β̄ − β

for the spline kernel. A description of the one dimensional symmetric kernels gen-
erating splines is provided in Appendix. In our implementation, we use the kernel
generating spline with order 1, which is given below:

K
(
(K,T ), (Ki, Ti)

) =
(

1 + KKi + 1

2
|K − Ki |(K ∧ Ki + Kb)

2

+ (K ∧ Ki + Kb)
3

3

)

×
(

1 + T Ti + 1

2
|T − Ti |(T ∧ Ti + Tb)

2 + (T ∧ Ti + Tb)
3

3

)

where (K,T ) denotes a variable in the two-dimensional (strike, maturity) space. Here
Kb and Tb denote lower bounds for (K,T ), i.e., (K,T ) ∈ [−Kb,+∞)×[−Tb,+∞).
In addition, T ∧ Ti = min(T ,Ti).
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Given a set of option prices {V 0
j }lj=1 with V

0
j corresponding to the initial option

price with strike Kj and maturity T j , the goals of the option model calibration are
twofold: accuracy and stability. Accuracy ensures that, when the calibrated model
is used in pricing, option pricing is consistent with the current market information.
Stability becomes especially important when the calibrated model is used for hedg-
ing and other risk management purposes. Therefore we first want to minimize the
calibration error, which can be measured as

m∑

j=1

wj

(
V 0(K̄j , T̄j ;x) − V̄ 0

j

)2

where each model initial option value V 0(K̄j , T̄j ;x) is uniquely determined by the
local volatility function (9) specified by the unknown coefficient vector x. Weights
{wj ≥ 0} are included here to facilitate achieving desired accuracy when option val-
ues are of significantly different magnitudes.

To achieve stability, we keep the local volatility function simple to minimize the
generalization error of the local volatility function based on the given finite price ob-
servations. We attempt to achieve this by explicitly pushing the coefficients in the
kernel function representation (9) to zero as much as possible but still ensuring cal-
ibration accuracy. This corresponds to forcing the cardinality of the set SV of the
support vector in (8) to be small. We attempt to achieve this by using ‖x‖1 as a reg-
ularization function. To see why this should work, we can regard the term ρ‖x‖1,
where ρ ≥ 0 is a constant, as the exact penalty function for the constraints xi = 0,
i = 1, . . . , n. Indeed, with a finite ρ > 0, typically some subset of the equality con-
straints will be satisfied. In addition, there exists a finite lower bound for ρ such that
when ρ is greater than this bound, all the constraints xi = 0, i = 1, . . . , n, will be
satisfied.

Combining these two objectives together, we propose to solve the following opti-
mization problem:

min
x∈�l+1

1

2

m∑

j=1

wj

(
V 0(K̄j , T̄j ;x) − V̄ 0

j

)2 + ρ

l∑

i=0

|xi | (10)

where the constant ρ ≥ 0 is a regularization parameter balancing the tradeoff between
the objectives for accuracy and stability. For a larger parameter ρ, the calibration error
is larger but the calibrated local volatility function tends to be simpler. Note that, if
we use the quadratic penalty function ‖x‖2

2 in the objective function, even though the
objective function becomes smooth, the coefficients {xi} are typically nonzero at the
solution. For further discuss on the exact penalty function and the quadratic penalty
function, see, e.g., [12].

The optimization problem (10) has the following equivalent constrained optimiza-
tion formulation:

min
x∈�l+1,z∈�l+1

1

2

m∑

j=1

(
V 0(K̄j , T̄j ;x) − V̄ 0

j

)2 + ρ

l∑

i=0

zi
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subject to zi − xi ≥ 0, i = 0, . . . , l

zi + xi ≥ 0, i = 0, . . . , l

zi ≥ 0, i = 0, . . . , l

3 A trust region method for the proposed calibration problem

We propose to use an affine scaling trust region method to solve the piecewise smooth
minimization problem (10) directly. The proposed method is an extension of the
affine scaling trust region method for the bound constrained minimization proposed
in [6].

Without loss of generality, we describe the computational method for the problem
below,

min
x∈�n

f (x) + ‖x‖1 (11)

where f : �n → �1 is a twice continuously differentiable function. The option cal-
ibration problem (10) can clearly be written as (11) with n = l + 1. The objective
function of (11) has a smooth component f (x) and a piecewise linear component
‖x‖1.

In [6], an interior point trust region method is proposed to solve the bound-
constrained minimization problem,

min
x∈�n

f (x), subject to l ≤ x ≤ u (12)

where l, u ∈ �n, l < u, and f : �n → �1 is a smooth function. At each iteration, the
main computation is approximately solving a trust region subproblem based on an
appropriate scaling, which depends on the first order Kuhn-Tucker optimality con-
dition as well as the distance of the current iterate to the constraints. In addition, a
reflective technique is used to accelerate convergence, see [5, 7] for more details.

Optimization problem (11) and the bound constrained minimization (12) share
some important properties; solving these problems is to identify which variables are
active, i.e., at the bounds for (12) or equal to zero for (11). Similar to the method
in [5, 7] for the bound constrained minimization, we now describe subsequently a
trust region method for solving (11). Analogous to the motivation in [5, 7], the trust
region subproblem is based on proper affine scaling, which depends on the first order
Kuhn-Tucker condition for (11) as well as the distance of the current iterate to x = 0.

It can be easily shown that the first-order Kuhn-Tucker conditions for (11) can be
stated as follows: if x is a local minimizer, then, for 1 ≤ i ≤ n,

xi

((∇f (x)
)
i
+ sign(xi)

) = 0
∣∣(∇f (x)

)
i

∣∣ ≤ 1
(13)

where

sign(xi)
def=

{
1 if xi ≥ 0,

−1 otherwise
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and (∇f )i denotes the ith component of the gradient of f (x).
Let the vector v(x) ∈ �n be defined below,

vi(x)
def=

{
|xi | if |(∇f (x))i | ≤ 1,

1 otherwise
(14)

and

D(x)
def= diag

(
v(x)

)
.

Thus the Kuhn-Tucker condition (13) can be stated as

D(x)
(∇f (x) + sign(x)

) = 0. (15)

In other words, a vector x satisfies Eqs. (15) if and only if the first-order Kuhn-Tucker
conditions of (11) hold at x.

Assume that the current iterate xk ∈ �n satisfies the condition (xk)i �= 0 for
1 ≤ i ≤ n. Let gk = ∇f (xk) + sign(xk). A Newton step for (15) at the kth iteration
satisfies

(
J v

k · diag(gk) + diag(vk) · ∇2f (xk)
)
dk = −diag(vk)gk (16)

where J v(x) ∈ �n×n is a diagonal matrix which corresponds to the Jacobian of
|v(x)|. Each diagonal element equals either zero or ±1.

We can write Eq. (16) in an equivalent form with a symmetric coefficient matrix

corresponding to a Hessian matrix of a quadratic function. Let Dk = diag(|vk| 1
2 ) and

sk = D
− 1

2
k dk

ĝk = D
1
2
k gk

M̂k = D
1
2
k · ∇2f (xk) · D

1
2
k + diag(gk) · J v

k .

Then the Newton equation (16) is equivalently expressed as

M̂ksk = −ĝk. (17)

The above equation (17) suggests an affine scaling transformation: sk = D
− 1

2
k dk and

consideration of the following trust region subproblem,

min
s∈�n

{
ψ̂k(s) : ‖s‖2 ≤ Δk

}
, (18)

where

ψ̂k(s) = ĝT
k s + 1

2
sT M̂ks.

The subproblem (18) has its counterpart in the original variable space:

min
d∈�n

{
ψk(d) : ∥∥D

− 1
2

k d
∥
∥

2 ≤ Δk

}
(19)
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where

ψk(d) = gT
k d + 1

2
dT Mkd

Ck = D
− 1

2
k · diag(gk) · J v

k · D− 1
2

k

Mk = ∇2fk + Ck

dk = D
1
2
k sk

The affine scaling matrix Dk controls the shape of the ellipsoid created by

‖D− 1
2

k d‖ ≤ Δk . With the choice of D(x) = diag(|v(x)|), the ellipsoid is short in
directions corresponding to components of (xk)i close to zero and |(∇f (xk))i | ≤ 1,
and long in other directions. In this way the solution to the quadratic model (19)
leads to small steps along the direction with components of (xk)i close to zero and
|(∇f (xk))i | ≤ 1.

For any given direction d , we consider the following piecewise quadratic approx-
imation of the objective function (11):

φk(d) = ∇f T
k d + 1

2
dT ∇2fkd + ‖xk + d‖1 − ‖xk‖1 + 1

2
dT Ckd (20)

It can be easily verified that φk(d) approximates the change of the objective function
with at least an accuracy of a linear order O(‖d‖).

The nonlinear system (15), derived from the KKT condition, is not differentiable

when xi = 0. We define the differentiable region F def= {x : x ∈ �n, (x)i �= 0,1 ≤ i ≤
n}. If the line segment from xk to xk +d is a subset of F , the quadratic approximation
φk(d) equals the objective function ψk(d) of the trust region subproblem.

Thus, in the proposed algorithm, we maintain differentiability for all iterates {xk}.
A simple backtracking technique used in interior point methods in [5, 7] can similarly
be used to avoid landing exactly on the points of non-differentiability.

Assume that dk is the solution to the trust region subproblem (19). It is possible
that non-differentiability occurs from xk to xk + dk , i.e., some variables may become
zero during the step. For any descent direction d , let φ∗

k [d] denote the minimum value
of φk(d) within the trust region, i.e.,

φ∗
k [d] def= min

‖αD
− 1

2
k d‖2≤Δk

φk(αd)

Similar to the algorithm in [6] for bound constrained minimization, to ensure
global convergence, at each iteration, a sufficient decrease condition needs to be sat-
isfied. In our implementation, we use the condition below

φk(dk) ≤ βgφ
∗
k

[−D−2
k gk

]

where 0 < βg < 1 is a given constant. Let pk be the solution to the trust region
subproblem (19), to ensure local quadratic convergence, the asymptotic sufficient
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Proposed Trust Region Algorithm. Let 0 < μ < 1.

For k = 0,1, . . .

Step 1. Compute fk , gk , Dk , Mk and Ck ; define the quadratic model

ψk(d) = gT
k d + 1

2
dT Mkd.

Step 2. Compute a step dk ∈ F , based on the subproblem:

min
d

{
ψk(d) : ∥∥D

− 1
2

k d
∥
∥

2 ≤ Δk

}
.

Step 3. Compute

ρ
f
k = f (xk + dk) − f (xk) + ‖xk + dk‖1 − ‖xk‖1 + 1

2dT
k Ckdk

φk(dk)

Step 4. If ρ
f
k > μ, then set xk+1 = xk + sk . Otherwise set xk+1 = xk .

Step 5. Update Δk as specified below.

Updating Trust Region Size Δk

0 < μ < η < 1, ΛU > ΛL > 0, 0 < γ3 < 1 and 0 < γ0 < γ1 < 1 < γ2

1. If ρ
f
k < 0 then set Δk+1 = min(Δkγ0,ΛU).

2. If 0 < ρ
f
k < μ then set Δk+1 = min(Δkγk,ΛU)

where γk = max(γ0, γ1‖D− 1
2

k dk‖2/Δk).

3. Assume ρ
f
k ≥ μ. Set Δk+1 = min(Δkγk,ΛU) where γk = γ0, if

‖D− 1
2

k dk‖2/‖pk‖2 < γ3 and Δk > ΛL, and γk = max(1, γ2‖D− 1
2

k dk‖2/Δk).

Otherwise γk = 1 if ρ
f
k ≥ η.

Fig. 1 A trust region algorithm for minimizing a nonlinear function plus a 1-norm

decrease condition for local quadratic convergence is

φk(dk) ≤ βpφ∗
k [pk]

where 0 < βp < 1 is a given constant.
The proposed trust region algorithm is summarized in Fig. 1; this algorithm is an

extension of the algorithm proposed in [6] for bound constrained minimization. As in
any typical trust region algorithm, the trust region size needs to be adjusted in each
iteration to ensure a sufficient agreement between the approximating function φk(d)

and the original objective function in (11). Convergence analysis for the proposed
algorithm can be established similar to the analysis in [6].
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4 Computational examples for calibrating local volatility functions

To illustrate the accuracy and stability of our proposed approach for the local volatil-
ity function calibration, we now consider a few examples, including both synthetic
market and real market LVF calibration examples. In addition, we discuss various
computational implementation issues such as data scaling for the kernel function,
initial guess of the local volatility function, and influence of the regularization pa-
rameter ρ.

4.1 Computing initial option values

In order to obtain a solution to the proposed optimization problem (10), we need to
calculate function value and the gradient of the smooth part f (x) of the objective
function in (10), which is given below

f (x)
def= 1

2

m∑

j=1

(
V 0(K̄j , T̄j ;x) − V

0
j

)2
. (21)

Thus an optimization algorithm for solving (10) requires computation of the initial
option values V 0(K̄j , T̄j ;x), j = 1, . . . ,m, for any given kernel coefficient vector x.

Initial European option values can be computed from either the Black-Scholes
PDE (2) or its dual PDE (3). Since each evaluation of f (x) requires all initial values
V 0((K̄j , T̄j );x), j = 1, . . . ,m, solving the dual PDE yields all m option values by
one PDE solve and thus leads to more efficient computation, compared to solving
the Black-Scholes PDE (2). Therefore we solve the following dual equation (3) to
compute initial option values {V 0

j }mj=1:

∂V 0(K,T )

∂T
− 1

2
σ 2(K,T )K2 ∂2V 0(K,T )

∂K2
+ (r − q)K

∂V 0(K,T )

∂K
+ qV 0(K,T )

= 0, ∀K > 0, ∀T > 0.

We use the Crank-Nicolson finite difference method in a finite domain D =
[0,Kmax] × [0, Tmax], where Kmax > 0 is a large value, e.g., three times the initial
underlying price, and Tmax = max({T̄j }). The computation also requires specifica-
tion of appropriate initial and boundary conditions. For European calls, we have the
initial condition V 0(K,0) = max(S0 − K,0). We implement the following boundary
conditions,

lim
K→+∞V 0(K,T ) = 0

∂V 0(K,T )

∂T
+ qV 0(K,T ) = 0, at K = 0.

In addition to the function value f (x), a typical optimization algorithm requires
the gradient and even Hessian matrix of f (x).
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Let F : �n → �m denote the vector of the weighted calibration error below:

Fj (x) = √
2wj

(
V 0(K̄j , T̄j ;x) − V̄ 0

j

)
, j = 1, . . . ,m.

Then

f (x) = 1

2
F(x)T F (x).

Let J (x) be the Jacobian matrix of the first order derivatives of F with respect to
x, i.e., J (x) = ∇F(x). In our implementation, we use automatic differentiation, see,
e.g., [8], to compute the m × n Jacobian matrix J (x).

Furthermore the Hessian matrix of f (x) is

∇2f (x) = J (x)T J (x) +
m∑

j=1

Fj (x) · ∇2Fj (x).

Since it is expected that F(x) ≈ 0 when x approaches a solution x∗, we approximate
Hessian matrix of f (x) simply as below:

∇2f (x) ≈ J (x)T J (x). (22)

In the spline kernel representation (9) for the local volatility function, l training
vectors {Ki,Ti}li=1 need to be specified in the region D. These training vectors do
not necessarily correspond to the strikes and maturities of the option price observa-
tions. In addition, the total number of training vectors does not have to correspond
to the total number of observations. In the proposed optimization, we can in fact
choose the number of training vectors to be larger than the total number of observa-
tions. The training points that actually play a role in the spline representation in the
calibrated volatility will be selected through the l1 regularization. However a large
number of training vectors l increase computational cost of the optimization. In our
computation, we often choose the number of training vectors l to be approximately
the number of market option price observations m. In addition, since the value of the
local volatility far from the strike prices of the given options does not affect the initial
model option values significantly, we typically place the training points uniformly in
the region [0.7S0,1.3S0] × [0, Tmax].
4.2 Computing a good starting point

The calibration problem (10) is nonconvex. A judicial choice of the starting point x0

can increase the probability of finding the global minimizer. In addition, the compu-
tational cost of the optimization algorithm can be greatly reduced with a good starting
point. In the context of local volatility calibration, it is reasonable to choose the ini-
tial x0 such that the corresponding volatility surface given by x0 is as close to the
initial implied volatility surface as much as possible. Suppose that m implied volatil-
ities {σ̄j }mj=1 are given for options with strike and maturity pairs {(K̄j , T̄j )}mj=1. We

choose the initial point x0 such that the following linear systems are satisfied in the
least squares sense:

σ
(
(K̄j , T̄j );x0) = σ̄j , 1 ≤ j ≤ m (23)
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Since we also want to bound the magnitudes of the coefficients, we determine the
starting point by solving

min
x0∈�l+1

m∑

j=1

((
l∑

i=1

x0
i K

(
(K̄j , T̄j ), (Ki, Ti)

) + x0
0

)

− σ̄j

)2

(24)

lb ≤ x0 ≤ ub

where lb and ub are lower and upper bounds respectively and {(Ki, Ti)}li=1 are spec-
ified training vectors.

4.3 Reconstructing the local volatility surface from a synthetic market

We first illustrate the accuracy and stability of the proposed local volatility function
calibration method using a synthetic example described in [9]. We consider a syn-
thetic market in which the underlying price follows an absolute diffusion process
where the local volatility function σ ∗ is given below:

σ ∗(S, t) = σc

S
(25)

with σc = 15. Thus the local volatility function depends only on S. Assume that the
initial asset price S0 = 100, the risk free interest rate r = 0.05, and the dividend rate
q = 0.02.

Assume that 22 European call prices from this synthetic market are given; these
prices are computed by the assumed local volatility function diffusion model (25).
Eleven of these options have 0.5 year maturity with strikes [90 : 2 : 110]. The other
half of options have 1 year maturity with the same set of strikes.

We determine the initial guess x0 from the implied volatilities by solving (24)
with the lower bound lb = −1 and the upper bound ub = 1. We set the number of
training vectors l = 18 and place these training points evenly in the significant region;
specifically the training vectors are given by [80 : 5 : 120] × [0.25,0.75].

Figure 2 compares the calibrated local volatility function with the true synthetic
market local volatility function σ ∗(S, t) = σc

S
at time t = 0, t = 0.5, and t = 1. The

left plots correspond to the calibration with the regularization parameter ρ = 1. For
the right plots, the regularization parameter ρ = 10−2. These plots demonstrate that
the calibrated local volatility function is very close to the true (synthetic) market local
volatility in the depicted region of [70,130] × [0,1]. In addition, the calibrated local
volatility is more accurate when t is close to 1. For regularization parameter ρ =
1, the calibration error

∑m
j=1(Vj − V̄j )

2 equals 7 × 10−4. When the regularization

parameter ρ = 10−2, a smaller calibration error of 1.2 × 10−5 is achieved.
As discussed before, for a support vector machine, a smaller number of nonzero

coefficients (support vectors) in the kernel solution representation typically leads to
a more stable prediction. Here we regard SV = {i : |x∗

i | ≥ 10−6} as the “ support
vectors”. For the calibration example with ρ = 1, the number of support vector is 8.
For ρ = 10−2, the number of support vector is 9. Note that here the dimension of the
coefficient vector x is 19.
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Fig. 2 Two-dimensional local volatility function calibration from 22 option prices. Training points are
[80 : 5 : 120] × [0.25,0.75]. The calibrated local volatility function is graphed at t = 0, 0.5, 1. For left
plots, the regularization parameter ρ = 1. For right plots, the regularization parameter ρ = 0.01
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Table 1 Implied volatilities for Oct 95 S&P 500 index options with strikes in % of the spot price

Maturity\Strike 85 % 90 % 95 % 100 % 105 % 110 % 115 % 120 %

0.695 .172 .157 .144 .133 .118 .104 .100 .101

1 .171 .159 .150 .138 .128 .115 .107 .103

1.5 .169 .160 .151 .142 .133 .124 .119 .113

To investigate stability of calibration, we add noise in the available market option
prices. Specifically we add 1 % of random price errors. We let the training points
be [80 : 5 : 120] × [0.25,0.75]. Other parameters setting is the same as the noise-
free setting. The optimization algorithm takes similar number of iterations as before.
The calibration error is, not surprisingly, larger. Figure 3 demonstrates the calibrated
local volatility function for ρ = 1 and ρ = 0.01 respectively. We observe that a larger
ρ leads to a slightly more stable model calibration, i.e. the local volatility function
seems to experience less change.

To further illustrate the stability of the proposed calibration approach, we in-
crease the number of training points from 18 to 52; these training points are [70 :
5 : 130] × [0.2 : 0.2 : 0.8]. We choose the parameter ρ = 1 and calibrate the local
volatility function from both error-free prices and noisy prices as before. The op-
timization takes a similar number of iterations and calibration errors are similar to
previous examples. Figure 4 demonstrates the accuracy and stability of local volatil-
ity function calibration. We note that the local volatility surface appears to be fairly
close to Fig. 3 for the calibration with 18 training points. This example shows that the
proposed calibration approach is relatively insensitive to the number and placement
of the training points.

4.4 Calibration from S&P 500 index option data

In spite of its attractive properties (such as market completeness), the calibrated local
volatility function diffusion model often encounters criticisms in practical applica-
tions. One criticism is that the calibrated local volatility function from the market
data often have unreasonable oscillations. In addition, the local volatility functions
calibrated within a small time window seem to have unreasonably large changes.

To investigate how our proposed calibration approach responds to these criticisms,
we now consider the local volatility functions calibrated from our proposed method
using the S&P 500 market option data. Specifically, we are interested in the char-
acteristics and stability of the calibrated local volatility surface. Table 1 and Fig. 5
present implied volatilities for S&P 500 index options on October 1995; this data is
also used in [1] and [9]. On this day, the S&P 500 index value S0 = $590, interest
rate r = 6 %, and dividend rate q = 2.62 %. The corresponding European call prices
are listed in Table 2.

We first calibrate the option prices by setting the weights uniformly, i.e., w =
[1,1, . . . ,1]. We choose 18 training points given by [0.8S0 : 0.05S0 : 1.2S0] ×
[0.5,1]. Note that the calibration error is expected to be much larger than in the pre-
vious synthetic market example because the option prices are almost 6 time larger.
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Fig. 3 Local volatility calibrated from 22 noisy option prices. Training vectors:
[80 : 5 : 120] × [0.25,0.75]. For the plots on the left, the regularization parameter ρ = 1. For
plots on the right, the regularization parameter ρ = 0.01
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Fig. 4 Calibrated local volatility function with 52 training points [70 : 5 : 130]× [0.2 : 0.2 : 0.8]. The reg-
ularization parameter ρ = 1. Left plots are calibrated from prices with no noise. Right plots are calibrated
from noisy prices
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Table 2 European call prices on October 95 S&P 500 index options with strikes in % of the spot price

Maturity\Strike 85 % 90 % 95 % 100 % 105 % 110 % 115 % 120 %

0.695 101.9 76.26 52.76 32.75 16.47 6.02 1.93 .62

1 108 83.6 61.55 41.57 25.41 12.75 5.5 2.13

1.5 117.2 94.37 73.14 53.97 37.33 23.68 14.3 7.65

Fig. 5 Implied volatility for S&P 500 index option market data on Oct 1995

Fig. 6 Calibrated local volatility surface from S&P 500 index option market data on Oct 1995. Left plot:
uniform weights. Right plot: individual weights (26)

Therefore we choose a larger regularization ρ = 10 to balance the calibration error
and model complexity consideration.

The left plot in Fig. 6 graphs the calibrated local volatility surface with uniform
weights. It can be observed that the local volatility surface is quite smooth in the
graphed region [.7S0,1.3S0]×[0,1.5]. We also note that the calibrated local volatility
bears similar shape to that of the implied volatility.

The relative price errors V̄ (K̄i ,T̄i )−V (K̄i ,T̄i )

V̄ (K̄i ,T̄i )
(in %) is presented in Table 3. From

Table 3, the calibration error is within ±1 % for most options. However, for out-of-
the money options with short maturities, the relative errors are larger because these
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Table 3 Relative calibration error in % for S&P 500 index options on Oct 95; strikes are in % of the spot
and uniform weights are used

Maturity\Strike 85 % 90 % 95 % 100 % 105 % 110 % 115 % 120 %

0.695 −.10 0.19 .66 .06 3.55 11.4 −2.37 −51.79

1 −.10 −.06 −.72 −1.08 −2.53 −.76 −2.35 −19.37

1.5 .17 .11 .07 −.10 .19 1.37 −.26 .12

Table 4 Relative calibration errors in % for the S&P 500 index options data on October 95 with individual
weights (26)

Maturity\Strike 85 % 90 % 95 % 100 % 105 % 110 % 115 % 120 %

0.695 −.09 0.20 .61 −.23 2.78 11.95 11.11 −13.39

1 −.11 −.02 −.64 −1.07 −2.79 −.71 2.94 2.74

1.5 .09 .15 .25 .1 .04 .45 −1.29 1.5

prices are relatively smaller; thus the contribution of the corresponding squared errors
to the objective function f (x) become relatively negligible. The calibration errors for
out-of-the-money call options with short maturities can be decreased if we allocate a
larger weight wj for these terms. For example, we increase the weights for the four
out-of-money options on the top right corner in Table 1 by setting individual weights
as below,

wj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

45 j = 8

4 j = 7,16

2 j = 15

1 otherwise.

(26)

Table 4 presents the relative calibration errors with individual weights in (26). It can
be observed that errors for out-of-the money call options are now smaller than the
errors when the weights are set uniformly.

Next, we investigate stability of the local volatility calibration for the proposed
method by considering multiple calibrations from market option data within a short
time period. We consider here two sets of S&P 500 options data, chosen from two
close by dates, March 2, 2004 and April 5, 2004. On March 2, 2004, the index value
S0 = $1149.1. The index value is S0 = $1150.57 on April 5, 2004. The other pricing
parameters for the two examples are the same: interest rate r = 1 % and dividend
yield q = 1.6 %. Table 5 and 6 present the implied volatilities and the corresponding
European call prices. Similarly 18 training points [0.8S0 : 0.05S0 : 1.2S0] × [0.5,1]
are chosen. Considering the magnitudes of the option prices, we set the regularization
parameter ρ = 10.

Table 7 reports the relative calibration error in % with uniform weights. Figures 7
and 8 graph the (1D) local volatilities at the specified time and the (2D) local volatility
surface respectively. Comparing the left plots with the right plots, it can be observed
that the calibrated local volatility on March 2, 2004 closely resembles the calibrated
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Table 5 Implied volatilities for S&P 500 index options on 02 Mar 2004 and 05 April 2004

02 March 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.58 .197 .1872 .1645 .1588 .1538 .1398 .1323 .1257

.84 .194 .1801 .1709 .1595 .1576 .1448 .1344 .1324

1.34 .1976 .1908 .1782 .1725 .1649 .1577 .1503 .1402

05 April 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.5 .1952 .1852 .1597 .1582 .1471 .1305 .1228 .1164

1 .201 .1936 .1797 .1689 .1628 .152 .1473 .1394

1.25 .2097 .196 .1894 .1785 .1776 .1673 .1584 .1511

Table 6 European call prices on S&P 500 index. On March 2, 2004, the index value S0 = $1149.1. The
index value is S0 = $1150.57 on April 5, 2004

02 March 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.58 141 120.4 81 65 50.9 26.9 12.7 5

.84 148.7 127.1 93 75 62.2 37.4 20 10.9

1.34 164.2 145.8 111.8 96.4 81 57.6 38.6 23

05 April 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.5 138.9 117.9 77.2 62.2 46 21.7 8.8 2.8

1 157.1 138.1 103 85.2 70.6 45.9 29.2 16.3

1.25 167.7 146.4 115.2 97.3 85.3 60.2 40.3 25.6

local volatility on April 5, 2004. Indeed, the shape of the calibrated local volatility
also resembles closely to that of the observed implied volatility. The local volatility
is higher for the out-of-the-money option.

To improve the calibration accuracy for out-of-the money options, we assign larger
weights for the out-of-the money options on the top right corner as below,

wj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

9 j = 8

4 j = 16,24

2 j = 7,15,23

1 otherwise.

(27)

Table 8 presents the relative calibration error when the weights w are set as in (27).
Figures 9 and 10 graph the corresponding calibrated local volatility at the specified
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Fig. 7 Calibrated local volatility for the S&P 500 index. Left plots are for the market option data on March
2, 2004. Right plots are for the option market data on April 5, 2004. Uniform weights are used
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Table 7 Relative calibration error in % for S&P 500 index options on March 2, 2004 and April 5, 2004

02 March 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.58 −.9 −.88 .92 .12 −1.34 .48 −2.35 −5.51

.84 −.16 1.41 −.38 1.86 −.86 .57 3.7 −6.59

1.34 .02 .0 −2.45 −.46 .76 −.92 −1.68 3.57

05 April 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.5 −.42 −.48 1.66 −1.57 −.29 2.92 −3.55 −16.19

1 .09 −.06 −.68 1.13 1.13 1.7 −2.79 −2.09

1.25 −.54 1.29 −1.11 1.07 −1.52 −1.16 .37 3.06

Fig. 8 Calibrated local volatility surface for the S& P 500 index. Left plot is for market option data on
March 2, 2004. Right plot is from market option data on April 5, 2004. Uniform weights are used

time and the 2D local volatility surface respectively. From Table 8, it can be observed
that the calibration error for out-of-the-money options are significantly improved. In
addition, the calibrated local volatility surfaces remain simple and smooth, closely
resemble in shape the calibrated local volatility with uniform weights. The difference
is that now the local volatility around the strikes of the out-of-the-money options
becomes slightly higher.

5 Concluding remarks

The local volatility function diffusion model for option pricing extends the classi-
cal Black-Scholes constant volatility model. This extension is attractive in practice
because it allows for the possibility of calibrating the observed implied volatility
smile and maintains market completeness at the same time. The ability to calibrate
the volatility smile and volatility term structure comes from the increase in model
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Fig. 9 2-D calibrated local volatility of S&P 500 index option with individual weights. Left plots are from
option data on March 2, 2004. Right plots are from option data on April 5, 2004
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Table 8 Relative calibration error in % for S&P 500 index options on March 2, 2004 and April 5, 2004
calibrated with individual weights

02 March 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.58 −.92 −.93 .78 −.05 −1.51 .63 −.87 −.66

.84 −.14 1.42 −.38 1.86 −.82 .84 4.64 −4.45

1.34 .02 .02 −.19 −.38 .83 −.99 −2.2 1.88

05 April 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.5 −.45 −.54 1.5 −1.76 −.44 3.72 .95 −3.56

1 .12 −.02 −.62 1.21 1.27 2.13 −1.92 −.84

1.25 −.54 1.29 −1.11 1.06 −1.56 −1.31 −.2 1.24

Fig. 10 Calibrated local volatility surface for the S&P 500 index. Left plot is for market option data on
March 2, 2004. Right plot is from market option data on April 5, 2004. Individual weights are used

complexity, i.e., volatility is changed from a constant to a deterministic function of
the asset price and time. Unfortunately, when calibrating a local volatility function in
practice, one often encounters a challenge: the market offers only a limited set of im-
plied volatilities (thus option prices) which are insufficient in determining an unique
local volatility function. In addition, instead of direct observations of local volatility
values, the market offers only option prices which depend nonlinearly on the local
volatility function.

These calibration challenges have hampered practical application of the local
volatility function diffusion model for option pricing and risk management. The cal-
ibrated local volatility function based solely on minimizing calibration errors often
lacks credibility because it typically contains unnatural oscillations. In addition, the
calibrated local volatility functions from the market data can change greatly on dif-
ferent days.
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From statistical learning theory, it is well known that a successful function es-
timation method based on a finite set of observations requires the balancing act of
ensuring accuracy of estimation on the observed data as well as maintaining simplic-
ity of the model. Unfortunately, the local volatility calibration problem departs from
the classical function estimation problem in that only the option price observations,
rather than local volatility function observations, are provided by the market.

We propose an optimization formulation to calibrate the local volatility function
accurately and stably. We represent a local volatility function based on kernel func-
tions generating splines. Using a regularization parameter, the proposed objective
function balances the calibration accuracy with the model simplicity. The complexity
of the model is controlled by minimizing the 1-norm of the kernel coefficient vec-
tor. In the context of the support vector regression for function estimation based on a
finite observations, this corresponds to minimizing the number of support vectors.

In this paper, we first illustrate the ability of the proposed approach to recon-
struct the local volatility accurately and stably in a synthetic local volatility market.
In addition, based on market S&P 500 option data, we further demonstrate that the
calibrated local volatility surface is simple and resembles in shape the observed im-
plied volatility surface. The stability of the calibration is illustrated by the fact that
the calibrated local volatility functions from option data on closeby dates show no
significant change.

In this paper, we have examined the performance of the proposed method for the
liquid S&P 500 standard index options which have relatively short term maturities.
Although the proposed method can definitely be applied to other option markets, in-
cluding options with long term maturities, it may be interest to empirically investigate
accuracy and stability of the method in those markets. Moreover, it will be interesting
to further investigate and improve computational efficiency of the proposed optimiza-
tion method to make it applicable in real time applications.

Appendix: Kernels generating splines with an infinite number of knots

Here we briefly describe kernels generating splines with an infinite number of knots.
The presentation follows from discussion in §11.6.2 in [24]. Suppose that we want
to approximate a one-dimensional function of one variable s defined on the interval
[−b,+∞), 0 < b < ∞, by splines of order d ≥ 0 with infinite number of knots: {ti},
1 ≤ i < ∞. First the one-dimensional variable s is mapped into a vector u in the
feature space of an infinite-dimension:

s → u = (
1, s, . . . , sd , (s − t1)

d+, . . . , (s − ti )
d+, . . .

)

where

(s − tk)
d+ =

{
0 if s ≤ tk ,

(s − tk)
d if s > tk .
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Then the spline has the form:

g(s) =
d∑

i=0

ais
i +

∫ +∞

−b

a(t)(s − t)d+dt,

where ai , i = 0, . . . , d and a(t) are coefficients of expansion. The kernel generating
the spline can be obtained by determining the inner product as follows

K(sj , si) =
∫ +∞

−b

(sj − t)d+(si − t)d+dt +
d∑

k=0

sk
j sk

i .

For the linear spline with d = 1 in particular, we have the following function repre-
sentation for the kernel generating spline:

K(sj , si) = 1 + sj si + 1

2
|sj − si |(sj ∧ si + b)2 + (sj ∧ si + b)3

3

where sj , si are training data points in the interval [−b,+∞), and sj ∧ si denotes
min(sj , si). It can shown that the above kernel function is twice differentiable.
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